EYE BLINK IDENTIFICATION AND REMOVAL FROM SINGLE-CHANNEL EEG USING EMD WITH ENERGY THRESHOLD AND ADAPTIVE FILTER
نویسندگان
چکیده
Electroencephalography (EEG) is a non-invasive method for measuring electrical activity in the brain, which reflects underlying neural of brain. In recent years, portable EEG devices become more ubiquitous domestic uses, research and clinical applications due to their compact design ease use various settings. Like many other biosignal modalities, are prone interference physiological artifacts, mainly from eye blinking. However, since EEGs equipped with only few channels at most or sometimes just single channel, removing blink artifact data challenge. The conventional removal using source separation cannot be applied single-channel signal. Eye important because its spectrum overlaps EEG’s theta delta frequency bands, can confused brain activity. Univariate-based compatible channels. This paper presents remove based on processing Empirical Mode Decomposition (EMD) Adaptive Noise Cancellation (ANC) system. By applying energy thresholds EMD, there no need incorporate EMD methods extract component accurately. ANC used converge extracted effective very minimal changes affected data. proposed was tested simulated signals, result showed good Root Mean-Square Error (RMSE) average value cleaned ( ) high Correlation Coefficient (CC) ). ABSTRAK: Electroensefalografi adalah kaedah bukan invasif untuk mengukur aktiviti elektrik di dalam otak, yang mencerminkan saraf otak. Kebelakangan ini, peranti mudah alih menjadi lebih meluas kegunaan domestik, penyelidikan dan aplikasi klinikal kerana reka bentuknya padat kemudahan penggunaan pelbagai tetapan. Seperti kebanyakan modaliti lain, terdedah kepada gangguan artifak fisiologi, terutamanya daripada mata kerdipan mata. Walau bagaimanapun, memandangkan dilengkapi dengan paling banyak pun hanya beberapa saluran, atau kadangkala satu mengalih keluar cabaran. Kaedah penyingkiran konvensional menggunakan pemisahan sumber tidak dapat digunakan pada alat saluran. Penyingkiran berkelip penting spektrumnya bertindih jalur frekuensi EEG, maka boleh dikelirukan berasaskan univariat serasi saluran sedikit. Kertas kerja ini membentangkan membuang kelip berdasarkan pemprosesan tunggal Penguraian Mod Empirikal Pembatalan Bunyi Adaptif (ANC). Dengan ambang tenaga tiada keperluan menggabungkan lain bagi mengekstrak komponen tepat. menumpu diekstrak berkesan perubahan sangat minimum terjejas. dicadangkan telah diuji signal disimulasi, serta hasilnya menunjukkan nilai purata Ralat Min Kuasa Dua Purata baik dibersihkan (0.3211±0.2738), Pekali Korelasi (0.9430±0.0839). Sabut gentian kelapa sawit berpotensi sebagai bahan mentah biojisim lignoselulosa menambah produk seperti bio api generasi kedua, biokomposit biotenaga. komposisi lignin wujud menentang proses tambah melindungi selulosa, itu mengehadkan penukaran selulosa berharga. hibrid ozonasi-ultrasonik merendahkan lignin, mula mendapat perhatian berkesan. Selain itu, Reka Bentuk Kotak-Behnken (BBD) menyiasat setiap kesan pembolehubah bebas keadaan prarawatan permukaan tindak balas (RSM), iaitu masa (30-90) min, suhu (20 -40) oC kadar aliran ozon (1-3) L/min terhadap peratusan degradasi (%). Keadaan optimum ditentukan graf fungsi keboleh inginan. Dapatan kajian bahawa balas, mempunyai signifikan (p<0.05). tertinggi 92.08% 30 2 selama 60 minit balas. Penurunan puncak penyerapan 1638 cm-1 1427 disokong oleh keputusan analisis peningkatan kehabluran sampel selepas sebanyak 80.20% disahkan morfologi sabut sebatian berjaya didegradasi gentian.
منابع مشابه
Ocular Artifacts Removal from EEG Using EMD
Electroencephalogram (EEG) provides a non-invasive way to analyze brain activity. Blinking and movement of the eyes causes a strong electrical activity that can contaminate EEG recordings, particularly around the forehead but also as far as in occipital areas. Removal of such ocular artifacts is a considerable signal processing problem, since those artifacts overlap in frequency domain with EEG...
متن کاملHybrid EEG—Eye Tracker: Automatic Identification and Removal of Eye Movement and Blink Artifacts from Electroencephalographic Signal
Contamination of eye movement and blink artifacts in Electroencephalogram (EEG) recording makes the analysis of EEG data more difficult and could result in mislead findings. Efficient removal of these artifacts from EEG data is an essential step in improving classification accuracy to develop the brain-computer interface (BCI). In this paper, we proposed an automatic framework based on independ...
متن کاملAutomatic removal of eye movement and blink artifacts from EEG data using blind component separation.
Signals from eye movements and blinks can be orders of magnitude larger than brain-generated electrical potentials and are one of the main sources of artifacts in electroencephalographic (EEG) data. Rejecting contaminated trials causes substantial data loss, and restricting eye movements/blinks limits the experimental designs possible and may impact the cognitive processes under investigation. ...
متن کاملA Removal of Eye Movement and Blink Artifacts from EEG Data Using Morphological Component Analysis
EEG signals contain a large amount of ocular artifacts with different time-frequency properties mixing together in EEGs of interest. The artifact removal has been substantially dealt with by existing decomposition methods known as PCA and ICA based on the orthogonality of signal vectors or statistical independence of signal components. We focused on the signal morphology and proposed a systemat...
متن کاملEye Blinks Removal in Single-channel Eeg Using Savitzky-golay Referenced Adaptive Filtering: a Comparison with Independent Component Analysis Method
Eye blink artifact is one of the major problems in electroencephalograph (EEG) signals which mainly affected a frontal channel. A frontal channel often involved in recent applications of portable EEG devices which require a real time processing including for artifact removal. In this paper, we proposed a new referencing method in adaptive filtering for eye blinks removal of a single-channel EEG...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IIUM Engineering Journal
سال: 2023
ISSN: ['2289-7860', '1511-788X']
DOI: https://doi.org/10.31436/iiumej.v24i2.2814